Let $I=[0,1]$, $A=\{0\}\cup\{\frac{1}{n}\}_{n\ge 1}$. Prove that there is no retraction from $I\times I$ to $I\times \{0\}\cup A\times I$.
Subscribe to:
Post Comments (Atom)
Property of join
Let $X$ be path-connected and $Y$ be arbitrary topological space. Then the join $X*Y$ is simply connected. $\textbf{Proof}.$ We use Van K...
-
Evaluate $$\sum_{n=1}^{\infty}\frac{1}{2^n n^2}.$$ Proof. The function $$S(x):=\sum_{n=1}^{\infty}\frac{x^n}{ n^2}$$ is well defined for...
-
$\textbf{Theorem.}$ Let $X$ be a Banach space and $A\subseteq X$. Prove that $A$ is precompact (in the norm) if and only if for every $w^*$-...
-
Let $A$ be a real matrix such that $A+A^2A^t+(A^t)^2=0$. Prove that $A=0$. $\textbf{Solution}.$ Multiply the given equation by $A^t$ from th...
No comments:
Post a Comment