A problem proposed by prof. Gadjev
Evaluate
\int_0^{\infty}\frac{\ln x}{x^2+2x+5}\, \text{d}x
\textbf{Solution.}
The indefinite integral is not expressible in elementary functions. Denote the integral by I. First make the change of variables \displaystyle x\to \frac{1}{x} to obtain
I=-\int_0^{\infty}\frac{\ln x}{5x^2+2x+1}\, \text{d}x\ \
In the original integral make the change of variables x\to 5x to obtain
I=\int_0^{\infty}\frac{\ln (5x)}{25x^2+10x+5}5\, \text{d}x=\int_0^{\infty}\frac{\ln x}{5x^2+2x+1}\, \text{d}x+\int_0^{\infty}\frac{\ln 5}{5x^2+2x+1}\, \text{d}x=
-I+\int_0^{\infty}\frac{\ln 5}{5x^2+2x+1}\, \text{d}x
whence
I=\frac{1}{2} \int_0^{\infty}\frac{\ln 5}{5x^2+2x+1}\, \text{d}x=\frac{1}{8}\arctan(2)\ln(5)
Comments
Post a Comment