Posts

Showing posts from November, 2019

Basel problem type sum, proposed by prof. Skordev

Evaluate \sum_{n=1}^{\infty}\frac{1}{2^n n^2}. Proof. The function S(x):=\sum_{n=1}^{\infty}\frac{x^n}{ n^2} is well defined for x\in[-1,1] and thus we need to find S(1/2). Using differentiation, we observe that S(x)=-\int_0^x\frac{\log(1-t)}{t}\text{d}t. If we make change of variables in the latter integral t\to 1-t we obtain S(x)=-\int_{1-x}^1\frac{\log t}{1-t}\text{d}t. \ \ \ \ \ (1) On the other hand, using integration by parts, we obtain S(x)=-\int_0^x\log(1-t)\text{d}\log t=-\log t\log(1-t)\Big|_{t=0}^x-\int_0^x\frac{\log t}{1-t}\text{d}t. Notice that \displaystyle \lim_{t\to 0}\log t \log(1-t)=0 (\log (1-t)\sim t and then L'Hopital), hence S(x)=-\int_0^x\log(1-t)\text{d}\log t=-\log x\log(1-x)-\int_0^x\frac{\log t}{1-t}\text{d}t. \ \ \ \ \ (2) Plugging x=1/2 and equating (1) to (2) we obtain \int_{1/2}^1\frac{\log(1-t)}{t}\text{d} t-\int_{0}^{1/2}\frac{\log(1-t)}{t}\text{d} t= \log\left(\frac{1}{2}\right)^2. On the ot...

Some math jokes (which turn out to be correct)

Prove that \int_{0}^{\infty}\frac{1}{(x^2+1)(x^{\pi}+1)}\text{d}x=\int_{0}^{\infty}\frac{1}{(x^2+1)(x^{e}+1)}\text{d}x Prove that \int_{0}^{\pi/2}\frac{1}{1+\tan^{\pi}(x)}\text{d}x=\int_{0}^{\pi/2}\frac{1}{1+\tan^{e}(x)}\text{d}x \textbf{Proof.} Both of the integrals are being solved, when the peculiar powers are being replaced by a parameter "a" and then differentiation with respect to "a"  is performed. Actually the integrals are related vie the change of variables x\to\arctan(x). For the first integral, denote f(x,a)= \frac{1}{(x^2+1)(x^{a}+1)}. Then \frac{\partial }{\partial a}f(x,a)=\frac{x^a \log (x)}{\left(x^a+1\right) \left(x^a+1\right)^2} Consider the integral \int_{0}^{1}\frac{\partial }{\partial a}f(x,a)\text{d}x. Making the change x\to 1/x this transforms to the integral $$\int_{\infty}^{1}\frac{\partial }{\partial a}f\left(\frac{1}{x},a\right)\frac{-1}{x^2}\text{d}x=\int_{1}^{\infty}\frac{\partial }{\partial a}f\left(\...