Basel problem type sum, proposed by prof. Skordev
Evaluate \sum_{n=1}^{\infty}\frac{1}{2^n n^2}. Proof. The function S(x):=\sum_{n=1}^{\infty}\frac{x^n}{ n^2} is well defined for x\in[-1,1] and thus we need to find S(1/2). Using differentiation, we observe that S(x)=-\int_0^x\frac{\log(1-t)}{t}\text{d}t. If we make change of variables in the latter integral t\to 1-t we obtain S(x)=-\int_{1-x}^1\frac{\log t}{1-t}\text{d}t. \ \ \ \ \ (1) On the other hand, using integration by parts, we obtain S(x)=-\int_0^x\log(1-t)\text{d}\log t=-\log t\log(1-t)\Big|_{t=0}^x-\int_0^x\frac{\log t}{1-t}\text{d}t. Notice that \displaystyle \lim_{t\to 0}\log t \log(1-t)=0 (\log (1-t)\sim t and then L'Hopital), hence S(x)=-\int_0^x\log(1-t)\text{d}\log t=-\log x\log(1-x)-\int_0^x\frac{\log t}{1-t}\text{d}t. \ \ \ \ \ (2) Plugging x=1/2 and equating (1) to (2) we obtain \int_{1/2}^1\frac{\log(1-t)}{t}\text{d} t-\int_{0}^{1/2}\frac{\log(1-t)}{t}\text{d} t= \log\left(\frac{1}{2}\right)^2. On the ot...