Proof of Gelfand-Phillips Theorem
$\textbf{Theorem.}$ Let $X$ be a Banach space and $A\subseteq X$. Prove that $A$ is precompact (in the norm) if and only if for every $w^*$-convergent to $\textbf{0}$ sequence $\{x_n^*\}_{n\ge 1}\subseteq X^*$ it holds that $\{x_n^*\}_{n\ge 1}$ converges uniformly to $\textbf{0}$ on $A.$ $\textbf{Proof.}$ If $A$ is precompact the result follows from Arzela-Ascoli theorem (combined with the fact that $w^*$-convergent sequences are norm bounded). Now we prove the reverse direction. First we proof the following characterization of compactness in normed spaces: $A$ is compact if and only if $A$ is bounded and for any $\varepsilon>0$ there exists a finite-dimensional space $F$ such that $A\subseteq F+\varepsilon\mathbf{B}.$ $\textit{Proof}.$ If $A$ is precompact, then for any $\varepsilon>0$ there exists $\{a_i\}_{i=1}^n\subseteq A$ such that $A\subseteq\bigcup_{i=1}^n\mathbf{B}_{\varepsilon}(a_i)$. In particular $A$ is bounded and \[A\subseteq \text{span}(\{...