Problem proposed by prof. Gadjev
\textbf{Problem.} Let f:[0,1]\to\mathbb{R} be a continuous function. Find the limit \lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n f\left(\frac{\ln k}{\ln n }\right). \textbf{Solution.} Fix \varepsilon>0. We aim to show that for large enough n \left|\frac{1}{n}\sum_{k=1}^n f\left(\frac{\ln k}{\ln n }\right)-f(1)\right|<3\varepsilon which would mean that the limit is f(1). Let M be an upper bound for |f| on [0,1], i.e. |f(x)|\le M for all x\in [0,1]. For all n\ge 1 define k(n)=\left\lfloor\frac{n}{n^{1/\sqrt{\ln n}}}\right\rfloor. The number is chosen in such a way that \lim_{n\to\infty}\frac{k(n)}{n}=0 \ \ \& \ \ \lim_{n\to\infty}\frac{\ln(k(n))}{\ln n}=1. Split the sum in two: $$\left|\frac{1}{n}\sum_{k=1}^n f\left(\frac{\ln k}{\ln n }\right)-f(1)\right|\le \left|\frac{1}{n}\sum_{k=1}^{k(n)} f\left(\frac{\ln k}{\ln n }\right)\right|+\left|\frac{1}{n}\sum_{k=k(n)+1}^{n} f\left(\frac...