Posts

Showing posts from March, 2018

Harmonic numbers problem

Prove that \sum_{i=1}^{n}\frac{(-1)^{i-1}}{i}{n\choose i}=H_n  where H_n is the n-th harmonic number. Proof. Denotе the sum by S. Consider f(t)=\sum_{i=1}^{n}{n\choose i}t^{i-1}=\frac{(1+t)^n-1}{t} Now integrate \int_{0}^{x} f(t)\mathrm{d}t=\sum_{i=1}^{n}{n\choose i}\frac{x^{i}}{i}=\int_{0}^{x}\frac{(1+t)^n-1}{t}\mathrm{d}t Now plug x=-1 and we get \int_{0}^{-1}f(t)\mathrm{d}t=-S On the other hand \int_{0}^{-1}f(t)\mathrm{d}t=\int_{0}^{-1}\frac{(1+t)^n-1}{t}\mathrm{d}t=-\int_{0}^{1}\frac{s^n-1}{s-1}\mathrm{d}s=\\=-\int_{0}^{1}1+s+s^2+\cdots+s^{n-1}\mathrm{d}s=-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)=-H_n

Holomorphic bounded by log

Let f be a holomorphic function in \{z\Big| 0<|z|<1\}, continuous in \{z\Big| 0<|z|\le 1\} and |f(z)|\le \log\left(\frac{1}{|z|}\right). Prove that f\equiv 0. Proof. Since f is continuous on the boundary, for z_0, s.t. |z_0|=1 we have |f(z_0)|=\lim_{z\to z_0}|f(z)|\le \lim_{z\to z_0}\log\left(\frac{1}{|z|}\right)=0 so f is 0 on the boundary. Consider now g(z)=zf(z). So g is also 0 on the boundary. Now observe that \lim_{z\to 0}|g(z)|=\lim_{z\to 0}|z||f(z)|\le \lim_{z\to 0}|z|\log\left(\frac{1}{|z|}\right)=0 so 0 is removable singularity for g. If we define g(0)=0, then g is holomorphic on \{z\Big||z|<1\}, continuous on the boundary. From the maximum modulus principle |g| attains its maximum at the boundary, and it is 0 there, so g\equiv 0 on \{z\Big||z|<1\}. Now take z_0\ne 0, and then f(z_0)=\frac{g(z_0)}{z_0}=0, so f\equiv 0.